

Source Test Report

Becton-Dickinson Medical 920 East 19th Street Columbus, Nebraska 68601

Catalytic Oxidizer -Ethylene Oxide DRE Test

Test Date: July 11, 2018

AST Project No. 2018-0668D

Regulatory Information

Permit No.(s)
Regulatory Citation(s)

40 CFR Part 63, Subpart O

Source Information

Source Name
Sterilization Chamber –
Catalytic Oxidizer

Target Parameter(s)
Ethylene Oxide - DRE

Contact Information

Test Location
BD Medical
920 East 19th Street
Columbus, Nebraska 68601

Jamie Petersen Environmental/Safety Engineer 402-563-8715 Jaime Petersen@bd.com Test Company
Alliance Source Testing, LLC
5530 Marshall Street
Arvada, Colorado 80002

Project Manager David Maiers (303) 420-5949 x33 david.maiers@stacktest.com

Field Team Leader Ken Moody (303) 420-5949 Kenneth.moody@stacktest.com

QA/QC Manager Heather Morgan (256) 260-3972 heather.morgan@stacktest.com

Test Plan/Report Coordinator Marty Willinger (303) 420-5949 x28 martin.willingert@stacktest.com Regulatory Agency NDEQ 1200 "N" Street, Suite 400 P.O. Box 98922 Lincoln, Nebraska, 68509-8922

Brad Pracheil Compliance Specialist 402-471-4141 brad.pracheil@nebraska.gov

Alliance Source Testing, LLC (AST) has completed the source testing as described in this report. Results apply only to the source tested and operating conditions for the specific test date and time(s) identified within this report. All results are intended to be considered in their entirety, and AST is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer.

To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report have been checked for completeness and are accurate, error-free and legible. Onsite testing was conducted in accordance with approved procedures. Any deviations or problems are detailed in the relevant sections on the test report.

This report is only considered valid once an authorized representative of AST has signed in the space provided below; any other version is considered draft. This document was prepared in portable document format (.pdf) and contains pages as identified in the bottom footer of this document.

Marty Willinger, QI

July 26, 2018

Date

Report Writer

Alliance Source Testing, LLC

July 26, 2018

Date

Kenneth Moody Field Team Leader Alliance Source Testing, LLC

TABLE OF CONTENTS

1.0	Intro	oduction	1-1
1.1	Fa	acility Description/ Source and Control System	n Descriptions1-1
1.2	Si	ite Specific Test Plan/Test Protocol & Notifica	tion1-1
1.3	T	est Program Notes	1-1
2.0			2-1
3.0	Test	ing Methodology	
3.1	U	S. EPA Reference Test Methods 1 and 2 – Vo	plumetric Flow Rate
3.2	U	S. EPA Reference Test Method 4 – Gas Mois	ture Content3-1
3.3	U	S. EPA Reference Test Method 18 – Ethylene	e Oxide
Table 1-	-1	LIST OF Emission Limits	TABLES1-1
Table 2	-1	Summary of Results	2-2
		APPEN	DICES
			Sample Calculations
Append	ix B		Field Data
Append	ix C		Quality Assurance/Quality Control Data
Append	ix D		Process Operating/Control System Data

Introduction

1.0 Introduction

Alliance Source Testing, LLC (AST) was retained by Becton-Dickinson Medical (BD Medical) to conduct compliance testing on the ethylene oxide (EO) sterilization chamber at the BD Medical facility located in Columbus, Nebraska. Performance tests were conducted to quantify the concentrations and mass rates of EO into and out of the catalytic oxidizer to determine the EO destruction removal efficiency (DRE) on a mass basis. The performance test was conducted to satisfy testing requirements and demonstrate compliance with emission standards outlined in 40 CFR Part 63, Subpart O – Ethylene Oxide Emissions Standards for Sterilization Facilities. The catalytic oxidizer is required to demonstrate 99% DRE of EO.

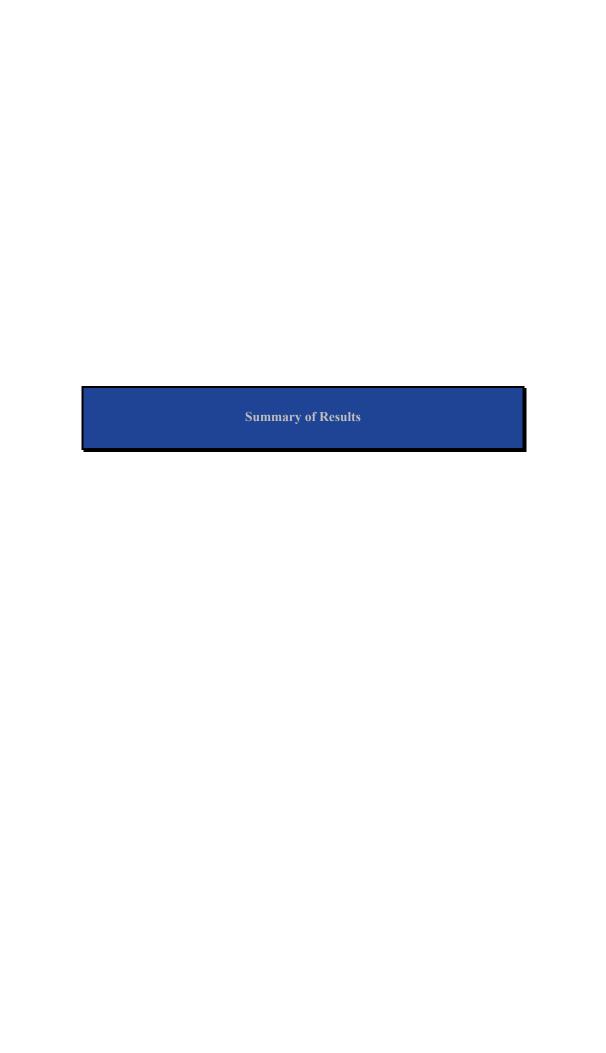
1.1 Facility Description/ Source and Control System Descriptions

An EO sterilization chamber is in service at the BD Medical facility in Columbus, Nebraska. A catalytic oxidizer is used for control of EO emissions. The source identification and operating standards are provided in Table 1-1.

Table 1-1
Emission Limits

Source	Pollutant	Citation	
Catalytic Oxidizer	Ethylene Oxide DRE \geq 99% Catalyst bed outlet temperature to be recorded	40 CFR Part 63, Subpart O	

1.2 Test Protocol & Notification


Testing was conducted in accordance with the test protocol submitted to NDEQ by BD Medical.

1.3 Test Program Notes

No test method deviations occurred during testing, expect as noted in the test protocol.

At the inlet sampling location, AST did not conduct EPA Method 4 sampling for measuring moisture content, due to the possible EO exposure risks. Moisture content was measured from the outlet sampling location and used for both the inlet and outlet volumetric flow calculations and converting EO concentrations to a dry basis. EPA Method 4 sampling was completed from a single sample point at the outlet sampling location.

EO was not detected at the outlet. An onsite reporting limit of 0.14 parts per million, wet volume basis (ppmvw) was reported for outlet test runs. EO levels detected at outlet were closer to 0.05 ppmvw.

2.0 Summary of Results

AST conducted compliance testing on the EO sterilization chamber on July 11, 2018.

Three (3), 1-hour test runs will be conducted to determine the concentrations of EO into and out of the sterilization chamber. Concurrent volumetric flow rate (VFR) measurements were conducted to calculate mass rates. Since the contents of the gas streams are is essentially air, a dry molecular weight of 29.0 was assumed for gas velocity calculations. EO DRE was determined by comparing the inlet and outlet EO levels on a mass basis.

Testing involved direct-interface EPA Method 18 on-site gas chromatographs equipped with flame ionization detectors (GCFID) to determine the inlet and outlet levels of EO. The GCFID were calibrated with EO balanced nitrogen standards certified to 2% accuracy and dilutions of certified standards. Due to the presence of methane in the exhaust, a sample of exhaust gas was collected in a Tedlar bag and spiked with a known concentration (50 ppm) of EO to demonstrate adequate EO quantification and recovery.

The involved processes were operating under normal conditions. Applicable operating and control equipment parameters were recorded throughout the test program by BD Medical personnel for inclusion in the test report, including;

• Catalyst bed outlet temperature

Table 2-1 provide a summary of the emission testing results with comparisons to the applicable limits. Any difference between the summary results listed in the following table and the detailed results contained in appendices are due to rounding for presentation.

Table 2-1 Summary of Results

Emissions Data						
Run Number	1	2	3	Average	Emission	
Date	07/11	07/11	07/11		Standard	
Operating Data						
Catalyst Bed Outlet Temperature, °C	169.3	185.0	193.1	182.5		
Inlet Data						
H ₂ O Concentration, %vd	3.4	3.1	2.7	3.1		
VFR, dscfm	4,394	4,216	4,228	4,279		
EO Concentration, ppmvd	680.1	956.9	1,129.1	922.0		
EO Rate, lb/hr	20.48	27.65	32.72	26.95		
Outlet Data						
H ₂ O Concentration, %vd	3.4	3.1	2.7	3.1		
VFR, dscfm	4,947	4,257	4,255	4,486		
EO Concentration, ppmvd	0.15	0.15	0.15	0.15		
EO Rate, lb/hr	0.005	0.004	0.004	0.005		
DRE Data						
EO DRE (lb/hr), %	99.98	99.98	99.99	99.98	99	

3.0 Testing Methodology

Testing was conducted in accordance with U.S. Environmental Protection Agency (EPA) Reference Test Methods (RM) 1, 2, 4 and 18 referenced in 40 CFR Part 60, Appendix A. The emission testing program was conducted in accordance with the test methods listed in Table 3-1. Method descriptions are provided below while quality assurance/quality control (QA/QC) data are provided in Appendix C.

Table 3-1
Source Testing Methodology

Parameter	U.S. EPA Reference Test Methods	Notes		
VFR 1-2		Full Velocity Traverses		
O ₂ , CO ₂ 2		Assumed Ambient		
H ₂ O 4		Gravimetric Analysis		
EO	18	Gas Chromatograph		

3.1 U.S. EPA Reference Test Methods 1 and 2 – Volumetric Flow Rate

The sampling location and number of traverse points were selected in accordance with EPA RM 1. To determine the minimum number of traverse points, the upstream and downstream distances were equated into equivalent diameters and compared to Figure 1-2 in EPA RM 1. All stack diameters, depths, widths, upstream and downstream disturbance distances and nipple lengths were measured on site with a verification measurement provided by the Field Team Leader.

Full velocity traverses were conducted in accordance with EPA RM 2 to determine the stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type thermocouple and pyrometer. The pitot assembly was leak checked pre and post each sampling period.

The temperature and differential pressure traverse data were combined with concurrently collected diluent data to calculate the stack gas velocity and volumetric flow rate in units of feet per second (ft/sec), actual cubic feet per minute (acfm), dry standard (1 atmosphere and 68°F) cubic feet per minute (dscfm) and pounds per hour (lb/hr). Since the contents of the gas streams are is essentially air, a dry molecular weight of 29.0 was assumed for gas velocity calculations.

3.2 U.S. EPA Reference Test Method 4 – Moisture Content

The stack gas moisture content was determined in accordance with EPA RM 4.

For each test run, a sample of gas for moisture determination was extracted from the stack at a constant flow rate of no more than 0.75 cubic feet per minute (cfm). The gas sample was passed through a stainless-steel probe, through a series of four (4) chilled glass impingers, and through a calibrated dry gas meter. In lieu of EPA RM 4 Section 8.1.1.1 requirements, a single sample point was used for moisture determination.

Prior to sampling, the first two impingers each were seeded with 100 milliliters of water. The third impinger was empty. The fourth impinger was seeded with 250 grams of dried silica gel. The sampling system was leak checked

pre and post each sampling period. Following sampling, the moisture gain in the impingers was measured gravimetrically and compared to the total sample volume (standard conditions) to determine the moisture content of the gas. The measured moisture content was compared to the saturation moisture content at stack temperature and pressure. The lower of the two moisture content values was reported.

3.3 U.S. EPA Reference Test Method 18 – Ethylene Oxide

Ethylene oxide concentrations were measured in accordance with EPA RM 18 using the direct interface sampling and analysis procedures detailed in the method. Samples were analyzed on-site with an HP Model 5890 Series II Gas Chromatograph equipped with dual RTX-1 columns to separate methane and EO, dual flame ionization detectors (FID) and Chemstation software.

Gas phase calibration standards were prepared by dilution of \pm 2% accuracy certified gas standards. Preparation of diluted standards were conducted using a gas-tight volumetric syringe and new Tedlar bags. Triplicate injections were conducted for each standard, and a calibration curve of peak area versus concentration was prepared. A least squares line (y=mx) was fit to the inlet and outlet data set.

Following the GC calibrations, a recovery study (line loss) was conducted using certified EO gas standards with approximate concentrations of 5000 ppm and 50 ppm of EO for the inlet and outlet sampling systems, respectively. A successful recovery study was demonstrated with the mean, triplicate GC response within 10% of the certified gas concentration.

Due to the presence of methane in the exhaust, prior to the test runs as well as during Run 2, a sample of exhaust gas was collected in a Tedlar bag. The contents of EO in the bag was quantified. Then the bag was spiked with a known concentration of EO to demonstrate adequate EO quantification and recovery. EO levels in the exhaust were below the reporting limit of 0.14 ppmvw.

EO levels were measured at the inlet and outlet simultaneously. A gas sample was transported directly to the GC gas sampling valves using a heated sample line. Samples were analyzed approximately once every 10-minutes. A "test run" consisted of five (5) consecutive injections. Three (3), test runs were conducted (for a total of 15 injections) at the inlet and outlet of the catalytic oxidizer.

After completing the 3 test runs, the mid-level calibration standards were re-analyzed at the gas sampling valve in triplicate. The average of the initial calibration response (triplicate average) and the post-test check response (triplicate average) were within 5% of their mean value, and the initial calibration linear regression data were used to quantify EO levels.

The results of the GC analyses were used to calculate EO levels in units of ppmvw. The data were combined with stack gas VFR and H₂O data to calculate EO mass rates in units of pounds per hour (lb/hr) and concentrations in parts per million, dry volume basis (ppmvd). The catalytic oxidizer DRE will be calculated on a mass basis.

Appendix A

Location Becton-Dickinson Medical

Source	Catalytic Oxidizer - Outlet
Project No.	18-0668D
Run No.	1
Method	VFR

Meter Pressure (Pm), in. Hg

$$Pm = Pb + \frac{\Delta H}{13.6}$$

where,

$$\begin{array}{lll} \text{Pb} & 28.44 & = \text{barometric pressure, in. Hg} \\ \Delta H & 1.000 & = \text{pressure differential of orifice, in H}_2\text{O} \\ \text{Pm} & 28.51 & = \text{in. Hg} \end{array}$$

Absolute Stack Gas Pressure (Ps), in. Hg

$$Ps = Pb + \frac{Pg}{13.6}$$

where,

$$\begin{array}{c|cccc} Pb & 28.44 & = barometric pressure, in. Hg \\ Pg & -0.25 & = static pressure, in. H_2O \\ Ps & 28.42 & = in. Hg \end{array}$$

Standard Meter Volume (Vmstd), dscf

$$\textit{Vmstd} = \frac{17.647 \times \text{Y} \times \text{Vm} \times \text{Pm}}{\textit{Tm}}$$

whore

Y	1.018	= meter correction factor
Vm	36.820	= meter volume, cf
Pm	28.51	= absolute meter pressure, in. Hg
Tm	551.0	= absolute meter temperature, °R
/mstd	34.230	= dscf

Standard Wet Volume (Vwstd), scf

where,

Vlc
$$25.9$$
 = volume of H2O collected, ml
Vwstd 1.219 = scf

Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions)

BWSsat =
$$\frac{10^{6.37 - \left(\frac{2.827}{72 + 365}\right)}}{Ps}$$

where

$$\begin{array}{c|cccc} Ts & 163.3 & = stack temperature, \, ^{\circ}F \\ Ps & 28.42 & = absolute stack gas pressure, in. Hg \\ BWSsat & 0.367 & = dimensionless \end{array}$$

Moisture Fraction (BWSmsd), dimensionless (measured)

$$BWS = \frac{Vwstd}{(Vwstd + Vmstd)}$$

where,

$$\begin{array}{c|cc} Vwstd & 1.219 & = standard \ wet \ volume, sef \\ Vmstd & 34.230 & = standard \ meter \ volume, dsef \\ BWS & 0.034 & = dimensionless \end{array}$$

Moisture Fraction (BWS), dimensionless

where

$$\begin{array}{c|cccc} BWSsat & 0.367 & = moisture fraction (theoretical at saturated conditions) \\ BWSmsd & 0.034 & = moisture fraction (measured) \\ BWS & 0.034 & = dimensionless \end{array}$$

Molecular Weight (WET) (Ms), lb/lb-mole

$$Ms = Md (1 - BWS) + 18 (BWS)$$

where,

Location Becton-Dickinson Medical
Source Catalytic Oxidizer - Outlet
Project No. 18-0668D Run No. 1 Method VFR

Average Velocity (Vs), ft/sec

$$Vs = 85.49 \times Cp \times (\Delta P^{1/2}) \text{ avg } \times \sqrt{\frac{Ts}{Ps \times Ms}}$$

where,

Сp	0.83	= pitot tube coefficient
$\Delta P^{1/2}$	0.565	= velocity head of stack gas, (in. H2O) ^{1/2}
Ts	623.3	= absolute stack temperature, °R
Ps	28.42	= absolute stack gas pressure, in. Hg
Ms	28.62	= molecular weight of stack gas, lb/lb mol
Vs	35.2	= ft/sec

Average Stack Gas Flow at Stack Conditions (Qa), acfm

$$Qa = 60 \times Vs \times As$$

where,

Average Stack Gas Flow at Standard Conditions (Qsw), scfm

$$Qsw = 17.647 \times Qa \times \frac{Ps}{Ts}$$

where,

Qa	6,366	= average stack gas flow at stack conditions, acfm
Ps	28.42	= absolute stack gas pressure, in. Hg
Ts	623.3	= absolute stack temperature, °R
Qsw	5,123	= scfm

Average Stack Gas Flow at Standard Conditions (Qsd), dscfm

$$Qsd = 17.647 \times Qa \times (1 - BWS) \times \frac{Ps}{Ts}$$

Qa	6,366	= average stack gas flow at stack conditions, acfm
BWS	0.034	= moisture fraction
Ps	28.42	= absolute stack gas pressure, in. Hg
Ts	623.3	= absolute stack temperature, °R
Qsd	4,947	= dscfm

Dry Gas Meter Calibration Check (Yqa), dimensionless

$$Y_{Qa} = \underbrace{ \left(\begin{array}{c} \Theta \\ Vm \end{array} \right. \sqrt{\frac{0.0319 \times Tm \times 29}{\Delta H @ \times \left(Pb + \frac{\Delta H \ avg}{13.6} \right) \times Md}} \sqrt{\Delta H} \ avg.}_{YQa} \times 100$$

where,

Y	1.018	= meter correction factor, dimensionless
Θ	60	= run time, min.
Vm	36.820	= total meter volume, dcf
Tm	551.0	= absolute meter temperature, °R
ΔΗ@	1.63	= orifice meter calibration coefficient, in. H ₂ O
Pb	28.44	= barometric pressure, in. Hg
ΔH avg	1.000	= average pressure differential of orifice, in H ₂ O
Md	29.00	= molecular weight (DRY), lb/lb mol
$(\Delta H)^{1/2}$	1.000	= average squareroot pressure differential of orifice, (in. H ₂ O) ^{1/2}
Yqa	1.6	= dimensionless

Location: Columbus Strerilization Plant

Source: Catalytic Oxidizer

Project No.: --

Run 1 Run 1

Ethylene Oxide Mass Rate (ER_{CO}), lb/hr

$$ER_{CO} = \frac{C_{CO} \times MW \times Qs \times 60 \times 28.32}{24.04 \times 1.0 E + 06 \times 454}$$

where,

Ethylene Oxide Destruction Remvoal Efficiency (RE_{CO}), %

$$RE_{co} = \left(\frac{C_{coc 15I} - C_{coc 15I}}{C_{coc 15I}}\right) \times 100$$

where,

$$C_{COc151}$$
 20.48 = EO Inlet Mass Rate, lb/hr
 C_{COc15} 0.005 = EO Outlet Mass Rate, lb/hr
RE 99.98 = %

Appendix B

Becton-Dickinson Medical

Columbus, Nebraska
Catalytic Oxidizer
7/11/2018

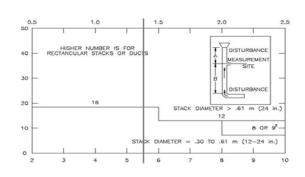
Field Reference Method Data (Inlet)							
Run# 1 2 3 Average							
	Start Time	10:00	11:10	12:20			
Stop Time 11:00 12:10 13:20							
	Sample Time	60	60	60			
	Method 18 GC Data (Inlet)						
MW	Run #	1	2	3	Average		
44.05	Ethylene Oxide (ppmvw)	656.68	923.96	1090.30	890.31		

Field Reference Method Data (Outlet)								
1	1 2 3 Average							
10:00	11:10	12:20						
11:00	11:00 12:10 13:20							
60	60 60 60							
N	Method 18 GC Data (Outlet)							
1	1 2 3 Average							
0.14	0.14 0.14 0.14 0.14							

	Reference Method Calculations (Inlet)							
	Run #	1	2	3	Average			
${ m B}_{ m ws}$	Moisture Content (%/100)	0.034	0.031	0.027	0.031			
F_{DSCFM}	Gas Flow (dscfm)	4,394	4,216	4,228	4,279			
ppmvd	Ethylene Oxide (ppmvd)	680.1	956.9	1,129.1	922.0			
lb/hr	Ethylene Oxide (lb/hr)	20.48	27.65	32.72	26.95			
tpy	Ethylene Oxide (tpy)	89.7	121.1	143.3	118.04			
DRE	DRE Ethylene Oxide - lb/hr (%)	99.98	99.98	99.99	99.98			

Refere	Reference Method Calculations (Outlet)							
1	2	3	Average					
0.034	0.031	0.027	0.031					
4,947	4,257	4,255	4,486					
0.15	0.15	0.15	0.15					
0.005	0.004	0.004	0.005					
0.02	0.02	0.02	0.02					

Method 1 Data

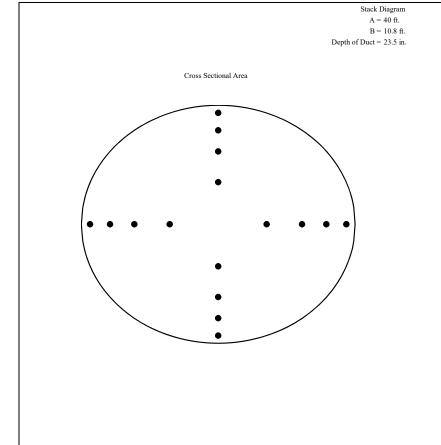

Location Becton-Dickinson Medical

Source Catalytic Oxidizer - Outlet
Project No. 18-0668D

Date: 07/11/18

Stack Parameters

Duct Orientation:	Vertical	
Duct Design:	Circular	<u> </u>
Distance from Far Wall to Outside of Port:	27.50	in
Nipple Length:	4.25	in
Depth of Duct:	23.50	in
Width of Duct:		in
Cross Sectional Area of Duct:	3.01	ft ²
Equivalent Diameter:		in
No. of Test Ports:	2	<u> </u>
Distance A:	40.0	ft
Distance A Duct Diameters:	20.4	(must be > 0.5)
Distance B:	10.8	ft
Distance B Duct Diameters:	5.5	(must be > 2)
Minimum Number of Traverse Points:	16	<u> </u>
Actual Number of Traverse Points:	16	<u> </u>
_		



CIRCULAR DUCT

					LOCATION O	OF TRAVER	SE POINTS				
					Number of trav	erse points o	n a diameter				
	2	3	4	5	6	7	8	9	10	11	12
1	14.6		6.7		4.4		3.2		2.6		2.1
2	85.4		25.0		14.6		10.5		8.2		6.7
3			75.0		29.6		19.4		14.6		11.8
4			93.3		70.4		32.3		22.6		17.7
5					85.4		67.7		34.2		25.0
6					95.6		80.6		65.8		35.6
7							89.5		77.4		64.4
8							96.8		85.4		75.0
9									91.8		82.3
10									97.4		88.2
11											93.3
12											97.9

Traverse Point	% of Diameter	Distance from inside wall	Distance from outside of port
1	3.2	0.75	5.00
2	10.5	2.47	6.72
3	19.4	4.56	8.81
4	32.3	7.59	11.84
5	67.7	15.91	20.16
6	80.6	18.94	23.19
7	89.5	21.03	25.28
8	96.8	22.75	27.00
9			
10			
11			
12			

^{*}Percent of stack diameter from inside wall to traverse point.

Page 19 of 40

Location Becton-Dickinson Medical

Source Catalytic Oxidizer - Outlet

Project No. <u>18-0668D</u>

Date <u>7/11/18</u>

Sample Point	Angle (ΔP=0)
1	4
2	3
3	6
4	6
5	9
6	7
7	12
8	10
9	7
10	5
11	8
12	6
13	8
14	9
15	10
16	13
Average	7.7

Location Becton-Dickinson Medical

Source Catalytic Oxidizer - Outlet

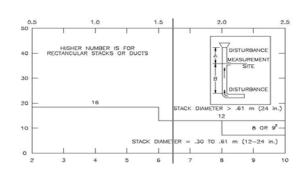
Project No. <u>18-0668D</u>

	Run No.	1	1	2			3	
Date		7/11		7/11/18		7/11/18		
	Status	VALID		VALID		VALID		
	Start Time		10:05				:32	
	Stop Time	10:		10: 10:			:41	
	Leak Check	Pa		Pa			:41 ass	
T. D. L.		ΔΡ	Ts	ΔP Ts		ΔP Ts		·
Traverse Point		(in. WC)	(°F)	(in. WC)	(°F)	(in. WC)	(°F)	
A1		0.22	161	0.20	176	0.21	183	
2		0.27	164	0.23	177	0.22	182	
3		0.28	165	0.26	178	0.24	183	
4		0.31	165	0.27	180	0.26	183	
5		0.36	166	0.25	184	0.24	184	
6		0.39	165	0.24	184	0.26	184	
7		0.36	163	0.25	184	0.25	183	
8		0.35	164	0.28	184	0.25	183	
B1		0.24	164	0.18	172	0.21	182	
2		0.29	164	0.23	178	0.23	183	
3		0.32	165	0.25	181	0.25	183	
4		0.33	163	0.26	180	0.26	182	
5		0.35	162	0.23	180	0.23	183	
6		0.36	160	0.24	178	0.25	184	
7		0.36	161	0.24	179	0.25	185	
8		0.35	160	0.26	179	0.25	185	
				<u> </u>		T		Average
Square Root of ΔP, (in. WC) ^{1/2}	$(\Delta P)^{1/2}$	0.5	665	0.4	91	0.4	191	0.516
Average ΔP, in. WC	(AP)	0.3	32	0.2	24	0.	24	0.27
Pitot Tube Coefficient	(Cp)	0.8	333	0.8	33	0.0	333	0.833
Barometric Pressure, in. Hg	(Pb)	28.	.44	28.44		28.44		28.44
Static Pressure, in. WC	(Pg)	-0.	25	-0.2	24	-0	.23	-0.24
Stack Pressure, in. Hg	(Ps)	28.	.42	28.	42	28.42		28.42
Average Temperature, °F	(Ts)	163	3.3	179	0.6	18	3.3	175.4
Average Temperature, °R	(Ts)	623	3.3	639	0.6	64	3.3	635.4
Moisture Fraction	(BWS)	0.034		0.0	31	0.0)27	0.031
Molecuar Weight, lb/lb-mole (dry)	(Md)	29.	.00	29.	00	29	.00	29.00
Molecuar Weight, lb/lb-mole (wet)	(Ms)	28.62		28.	66	28	.70	28.66
Velocity, ft/sec	(Vs)	35.2		31	.0	31	1.0	32.4
VFR at stack conditions, acfm	(Qa)	6,3	666	5,6	01	5,6	510	5,859
VFR at standard conditions, scfh	(Qsw)	307,	404	263,	533	262	,478	277,805
VFR at standard conditions, scfm	(Qsw)	5,1	23	4,3	92	4,3	375	4,630
FR at standard conditions, dscfm	(Qsd)	4,9	47	4,257		4,255		4,486

Location Becton-Dickinson Medical
Source Catalytic Oxidizer - Outlet
Project No. 18-0668D

Run No.		1	2	3	
Date		7/11/18	7/11/18	7/11/18	
Status		VALID	VALID	VALID	
Start Time		10:00	11:10	12:20	
End Time		11:00	12:10	13:20	
Run Time, min	(θ)	60	60	60	
Meter ID	(0)	M5-10	M5-10	M5-10	
Meter Correction Factor	(Y)	1.018	1.018	1.018	
Orifice Calibration Value	(ΔH @)	1.630	1.630	1.630	
Max Vacuum, in. Hg	(211 (6)	4.0	4.0	4.0	
, 0		PASS	PASS		
Post Leak Check, cfm (at max vac.)		PASS	PASS	PASS	
Meter Volume, ft ³		516 450			
Time		516.458		504.000	
0		516.458	553.372	591.000	
5		519.500	556.500	594.100	
10		522.500	559.600	597.200	
15		525.500	562.600	600.300	
20		528.600	565.700	603.400	
25		531.700	568.800	606.560	
30		534.760	572.000	609.800	
35		537.800	575.000	612.800	
40		540.800	578.100	615.900	
45		543.900	581.200	619.000	
50		547.000	584.400	622.100	
55		550.100	587.500	625.200	
60		553.278	590.745	628.407	
Total Meter Volume, ft ³	(Vm)	36.820	37.373	37.407	
Temperature, °F					
Time		Meter Imp. Exit	Meter Imp. Exit	Meter Imp. Exit	
0		86.0 / 32.0	96.0 / 42.0	101.0 / 46.0	
5		85.0 / 40.0	97.0 / 50.0	103.0 / 50.0	
10		86.0 / 55.0	98.0 / 54.0	103.0 / 51.0	
15		87.0 / 58.0	99.0 / 54.0	104.0 / 52.0	
20		88.0 / 58.0	100.0 / 55.0	104.0 / 52.0	
25		89.0 / 59.0	100.0 / 55.0	104.0 / 52.0	
30		90.0 / 59.0	101.0 / 56.0	105.0 / 51.0	
35		93.0 / 57.0	101.0 / 55.0	105.0 / 50.0	
40		94.0 / 60.0	102.0 / 57.0	106.0 / 48.0	
45		95.0 / 61.0	102.0 / 57.0	105.0 / 47.0	
		96.0 / 60.0	103.0 / 58.0	106.0 / 48.0	
50		97.0 / 61.0	103.0 / 59.0	105.0 / 47.0	
55		97.0 / 60.0	103.0 / 59.0	105.0 / 48.0	
60 Average Meter Temperature, °F	(T)				
Average Meter Temperature, °F Average Meter Temperature, °R	(Tm) (Tm)			104.3 /	
Average Meter Temperature, *R Barometeric Pressure, in. Hg	(1 m) (Pb)	551.0 / 28.44	560.4 / 28.44	564.3 / 28.44	
, 0	` ′	1.000	1.000		
Meter Orifice Pressure, in. WC	(ΔH)			1.000	
Meter Pressure, in. Hg	(Pm)	28.51	28.51	28.51	
Standard Meter Volume, ft ³	(Vmstd)	34.230	34.162	33.955	
Impinger 1, Pre/Post Test, mL		462.4 / 475.0	475.0 / 488.0	488.0 / 499.6	
Impinger 2, Pre/Post Test, mL		453.0 / 456.8	456.8 / 459.6	459.6 / 462.5	
Impinger 3, Pre/Post Test, mL		300.4 / 302.9	301.5 / 302.7	300.4 / 301.1	
Impinger 4, Pre/Post Test, g		502.9 / 509.9	509.9 / 516.0	516.0 / 521.1	
Volume Water Collected, mL	(Vlc)	25.9	23.1	20.3	
Standard Water Volume, ft ³	(Vwstd)	1.219	1.087	0.956	
Moisture Fraction Measured	(BWSmsd)	0.034	0.031	0.027	
Moisture Fraction @ Saturation	(BWSsat)	0.367	0.532	0.575	
Moisture Fraction, unitless	(BWS)	0.034	0.031	0.027 Page 22 of 4	
DGM Calibration Check Value	(Yqa)	1.6	2.2	1.9	

Method 1 Data

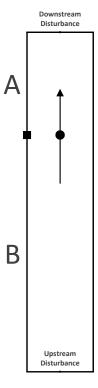

Location Becton-Dickinson Medical

Source Catalytic Oxidizer - Inlet
Project No. 18-0668D

Date: 07/11/18

Stack Parameters

Duct Orientation:	Horizontal	
Duct Design:	Circular	_
Distance from Far Wall to Outside of Port:	27.50	in
Nipple Length:	4.75	in
Depth of Duct:	23.25	in
Width of Duct:		in
Cross Sectional Area of Duct:	2.95	ft ²
Equivalent Diameter:		in
No. of Test Ports:	2	-
Distance A:	5.4	ft
Distance A Duct Diameters:	2.8	(must be > 0.5)
Distance B:	12.5	ft
Distance B Duct Diameters:	6.5	(must be > 2)
Minimum Number of Traverse Points:	12	_
Actual Number of Traverse Points:	16	


CIRCULAR DUCT

					LOCATION O)F TRAVER	RSE POINTS				
					Number of trav	erse points o	n a diameter				
	2	3	4	5	6	7	8	9	10	11	12
1	14.6		6.7		4.4		3.2		2.6		2.1
2	85.4		25.0		14.6		10.5		8.2		6.7
3			75.0		29.6		19.4		14.6		11.8
4			93.3		70.4		32.3		22.6		17.7
5					85.4		67.7		34.2		25.0
6					95.6		80.6		65.8		35.6
7							89.5		77.4		64.4
8							96.8		85.4		75.0
9									91.8		82.3
10									97.4		88.2
11											93.3
12											97.9

Traverse Point	% of Diameter	Distance from inside wall	Distance from outside of port
1	3.2	0.74	5.49
2	10.5	2.44	7.19
3	19.4	4.51	9.26
4	32.3	7.51	12.26
5	67.7	15.74	20.49
6	80.6	18.74	23.49
7	89.5	20.81	25.56
8	96.8	22.51	27.26
9			
10			
11			
12			

Stack Diagram A = 5.42 ft.B = 12.5 ft.Depth of Duct = 23.25 in.

Cross Sectional Area

Page 23 of 40

^{*}Percent of stack diameter from inside wall to traverse point.

Location Becton-Dickinson Medical

Source Catalytic Oxidizer - Inlet

Project No. <u>18-0668D</u>

Date <u>7/11/18</u>

Sample Point	Angle (ΔP=0)
1	3
2	4
3	7
4	6
5	9
6	11
7	12
8	14
9	5
10	6
11	5
12	7
13	8
14	4
15	6
16	5
Average	7.0

Location Becton-Dickinson Medical

Source Catalytic Oxidizer - Inlet

Project No. <u>18-0668D</u>

	Run No.	1	<u> </u>	2	1		3	•
	Date	7/11		7/11			1/18	
	Status		LID	VAI			LID	
	Start Time	10:		11:				
	Stop Time						:43	
	Leak Check	10: Pa		11: Pa			:51 ass	
	Zenn onten	ΔΡ	Ts	ΔP	Ts	ΔP	Ts	
Traverse Point		(in. WC)	(°F)	(in. WC)	(°F)	(in. WC)	(°F)	
A1		0.20	93	0.22	102	0.22	99	
2		0.23	94	0.23	101	0.20	101	
3		0.25	94	0.23	101	0.23	102	
4		0.25	94	0.22	101	0.22	102	
5		0.24	94	0.22	100	0.21	101	
6		0.24	93	0.23	100	0.22	101	
7		0.26	93	0.21	99	0.23	100	
8		0.23	93	0.17	97	0.18	97	
B1		0.21	93	0.20	100	0.21	99	
2		0.24	93	0.22	100	0.23	100	
3		0.26	93	0.24	100	0.24	100	
4		0.24	93	0.23	100	0.22	101	
5		0.25	93	0.23	101	0.24	101	
6		0.24	94	0.24	103	0.23	102	
7		0.25	94	0.22	102	0.22	102	
8		0.22	94	0.22	102	0.23	102	
				<u> </u>		1		Average
Square Root of ΔP, (in. WC) ^{1/2}	$(\Delta P)^{1/2}$	0.4	88	0.4	69	0.4	469	0.475
Average ΔP, in. WC	(ΔP)	0.2	24	0.2	22	0.	22	0.23
Pitot Tube Coefficient	(Cp)	0.8	33	0.8	33	0.8	333	0.833
Barometric Pressure, in. Hg	(Pb)	28.	44	28.	44	28	.44	28.44
Static Pressure, in. WC	(Pg)	-7.	30	-7.0	00	-7	.20	-7.17
Stack Pressure, in. Hg	(Ps)	27.	90	27.	93	27	.91	27.91
Average Temperature, °F	(Ts)	93	.4	100).6	10	0.6	98.2
Average Temperature, °R	(Ts)	553	3.4	560).6	56	0.6	558.2
Moisture Fraction	(BWS)	0.0	34	0.0	31	0.0	027	0.031
Molecuar Weight, lb/lb-mole (dry)	(Md)	29.	00	29.			.00	29.00
Molecuar Weight, lb/lb-mole (wet)	(Ms)	28.		28.			.70	28.66
Velocity, ft/sec	(Vs)	28	.9	28	.0	28	8.0	28.3
VFR at stack conditions, acfm	(Qa)	5,1		4,9	48	4,9	947	5,003
VFR at standard conditions, scfh	(Qsw)	273,	019	261,	009	260,793		264,940
VFR at standard conditions, scfm	(Qsw)	4,5	50	4,3		4,3	347	4,416
FR at standard conditions, dscfm	(Qsd)	4,3	94	4,2	16	4,2	228	4,279

Becton-Dickinson Medical
Catalytic Oxidizer
7/11/2018
EPA Method 18: Determination of Gaseous Organic Compounds using Gas Chromatography

					Sa	mple Analysis	s (Inlet)						
						Run 1							
Cpd	Inj. 1		Inj. 2		Inj. 3		Inj. 4		Inj. 5			Average	
ID	RT	AC	RT	AC	RT	AC	RT	AC	RT	AC	RT	AC	ppm
Ethylene Oxide	2.076	1291768.2	2.077	477331.4	2.077	1408321.9	2.078	2018887.9	2.079	2003382	2.078	1439938	656.68
Cpd	Inj. 1		Inj. 2		Inj. 3	Run 2	Inj. 4		Inj. 5				
ID .	RT	AC	RT	AC	RT	AC	RT	AC	RT	AC	RT	AC	ppm
Ethylene Oxide	2.082	1935611.6	2.084	2062107.8	2.085	2523314	2.087	1567394.5	2.087	2041732.7	2.085	2026032	923.96
						Run 3							
Cpd	Inj. 1		Inj. 2		Inj. 3		Inj. 4		Inj. 5			Average	
	DT	AC	RT	AC	RT	AC	RT	AC	RT	AC	RT	AC	ppm
ID	RT	AC	IV I	AC	111	110		110		110		110	ppm

					Sam	ple Analysis	(Outlet)						
						Run 1							
Cpd	Inj. 1		Inj. 2		Inj. 3		Inj. 4		Inj. 5			Average	
ID	RT	AC	RT	AC	RT	AC	RT	AC	RT	AC	RT	AC	ppm
Ethylene Oxide	2.744	279.278	2.737	139.59	2.747	135.79	2.746	51.2	2.732	64.0	2.741	134	0.05
Cpd ID	Inj. 1 RT	AC	Inj. 2 RT	AC	Inj. 3 RT	AC	Inj. 4 RT	AC	Inj. 5 RT	AC	RT	Average AC	nnm
Cpd	Inj. 1		Inj. 2		Inj. 3	Run 2	Inj. 4		Inj. 5			Average	
ID		53.43	2.764	74.7	2.738	91.9	2.727	57.82	2.733	132.5	2.739	82	0.03
Ethylono Ovido							4.141	37.02	2.733		2.139	02	
Ethylene Oxide	2.734	55.15		,					•				0.05
Ethylene Oxide	2./34	33.13		,									0.00
Ethylene Oxide Cpd	2./34 Inj. 1	33.13	Inj. 2		Inj. 3	Run 3	Inj. 4		Inj. 5			Average	0.00

Appendix C

S-type Pitot ID:

P-1103

3-Apr-17 Date:

Standard Pitot ID:

001

Personnel: DH

Cp(std):

0.99

Cp(actual):

0.833

Part Number: PPS12-Y-007.5

P_{bar}(in Hg):

29.61

Test Velocity (fps):

50

T(°F):

71

A-SIDE

ΔP _{std} (in. H ₂ 0)	ΔP _s (in. H ₂ 0)	Cp(s)	Deviation*
0.547	0.767	0.836	-0.002
0.548	0.759	0.841	0.003
0.549	0.764	0.839	0.001
0.545	0.766	0.835	-0.003
	AVERAGE	0.838	0.002
		Std deviation	0.003

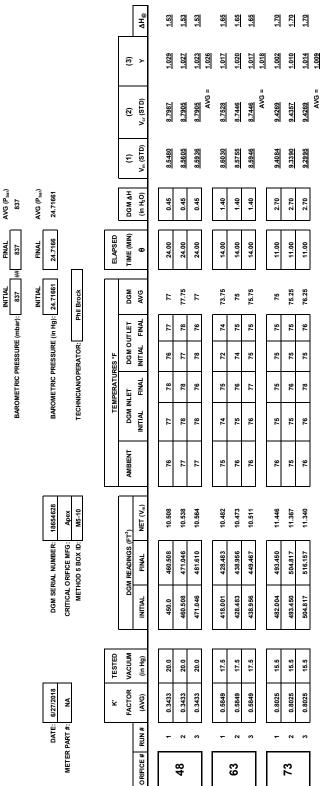
ΔP _{std} (in. H ₂ 0)	ΔP _s (in. H ₂ 0)	Cp(s)	Deviation*
0.547	0.784	0.828	-0.001
0.547	0.781	0.829	0.000
0.548	0.782	0.829	0.000
0.551	0.782	0.831	0.002
	AVERAGE	0.829	0.001
		Std deviation	0.001

$$Cp(s) = Cp(std)\sqrt{\frac{\Delta P(std)}{\Delta P(s)}}$$

$$Cp(A) - Cp(B) =$$

0.009

{must be <0.010}


*Deviation = $\{Cp(s) - AVGCp(s)\}\$ {must be <0.010}

Standard deviation of the deviations must be less than 0.02 for both sides.

Pitot tube S/N P-1103 was calibrated in accordance with the CFR 40, Part 60 Appendix A, Method 2, Section 10.

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

- Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range
- Record barometric pressure before and after calibration procedure
- necessary to achieve a minimum volume of 10 cubic feet Vcr (STD). K factors of -.8025 = 13 minutes, .5011 = 20 minutes, .3433 = 30 minutes 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time
 - 4) Record data and information in the GREEN cells, YELLOW cells are calculated

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The property of the control of the critical orifice, $V_{cc}(std)$ and the critical orifice, $V_{cc}(std)$ and the Critical orifical orifice, $V_{cc}(std)$ and the DGM (Tailfastion Racor Y. These equations are automatically calculated in the spreadsheet above.

AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 1.018

= Net volume of gas sample passed through DGM, corrected to standard conditions $\rm K_{\rm t}=17.64$ 'R/in. Hg (Erglish), 0.3958 'K/mm Hg (Metric) $T_{\rm m} =$ Absolute DGM avg. temperature (°R - English, °K - Metric) $Vm_{(ztd)} = K_1 * Vm * \frac{Pbar + (\Delta H / 13.6)}{}$

Ξ

8

 $\Delta H_{\oplus} = \left(\frac{0.75.0}{V_{cr}(std)}\right)^2 \Delta H \left(\frac{V_{m}(std)}{V_{m}}\right)$

AVERAGE $\Delta H_{\odot} = 1.63$

= Volume of gas sample passed through the critical orifice, corrected to standard conditions $\tau_{\rm amb}$ = Absolute ambient temperature ("R - English, "K - Metric) $Vcr_{(ztd)} = K^* * \frac{Pbar * \Theta}{\sqrt{Tamb}}$

K' = Average K' factor from Critical Orifice Calibration

DGM calibration factor

 $Y = \frac{VCT_{(ztd)}}{Vm_{(ztd)}}$

<u>છ</u>

ABS (Relative Difference) % R Pyrometer Reading Œ 99 149 251 499 802 Pyrometer Calibration Data 50 100 150 250 500 800 Max Absolute Difference %.... Calibration Temp. Reading (F)

Omega Temp Calibrator ID 1 Omega Temp Calibrator S/N... T-197197 Calibration Date.......7/27/2017 7/27/2017 Recert Date 0.2 0.2 0.2 0.1 0.2 0.2

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Customer: AIR LIQUIDE POLLUTION INC

Part Number: X02NI99C15A5263 Reference Number: 126-400855163-1

Cylinder Number: ALM-014712 Cylinder Volume: 144.4 CF
Laboratory: 124 - La Porte Mix - TX Cylinder Pressure: 2015 PSIG
Analysis Date: Feb 15, 2017 Valve Outlet: 350

Lot Number: 126-400855163-1

Expiration Date: Feb 15, 2019

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS Component Req Conc Actual Concentration (Mole %) Uncertainty ETHYLENE OXIDE 50.00 PPM 50.02 PPM +/- 2% NITROGEN Balance

Notes:

AIR LIQUIDE POLLUTION INC

PO#: D0OFC PO#: 4510145652

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Customer: AIR LIQUIDE POLLUTION INC

Part Number: X02NI99C15A0631 Reference Number: 126-400855162-1

Cylinder Number: ALM013685 Cylinder Volume: 144.9 CF
Laboratory: 124 - La Porte Mix - TX Cylinder Pressure: 2015 PSIG
Analysis Date: Feb 15, 2017 Valve Outlet: 350

Lot Number: 126-400855162-1

Expiration Date: Feb 15, 2019

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS Component Req Conc Actual Concentration (Mole %) ETHYLENE OXIDE 5210 PPM 5222 PPM +/- 2% NITROGEN Balance

Notes:

AIR LIQUIDE POLLUTION INC

PO#: D0OFC PO#: 4510145652

Location Becton-Dickinson Medical

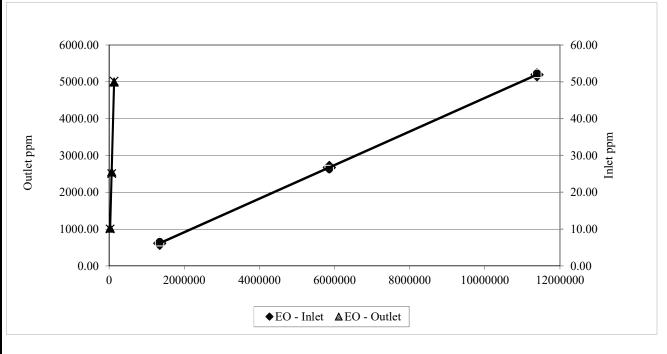
Source Catalytic Oxidizer - Outlet

Project No. 18-0668D

Parameter VFR

Date	Pitot ID	Evidence of damage?	Evidence of mis-alignment?	Calibration or Repair required?
7/11/18	P-1103	no	no	no
Date	Barometric Pressure	Evidence of damage?	Reading Verified	Calibration or Repair required?
7/11/18	Weather Station	NA	NA	NA

EPA Method 18: Determination of Gaseous Organic Compounds using Gas Chromatography


				Initial Thro	ee-Point Calibra	tion				
			(Inle	t) High Lev	vel Calibration S	Standard				
Cpd	Conc.	I	nj. 1	I	nj. 2	I	nj. 3		Average	
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	OK?
Ethylene Oxide	5222.00	2.055	11592055.0	2.056	11610124.0	2.058	10970216.0	2.056	11390798	Y
					Calibration Stan					
Cpd	Conc.	1	nj. 1	1	nj. 2	Inj. 3			Average	
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	OK?
Ethylene Oxide	2611.00	2.059	5862940.0	2.06	5875961.5	2.061	5843135.0	2.060	5860679	Y
							_			
			I	ow-Level (Calibration Star	dard				
Cpd	Conc.	Inj. 1	Sig.20015	Inj. 2	Sig.20016	Inj. 3	Sig.20017		Average	
		RT	AC	RT	AC	RT	AC	RT	AC	OK?
ID	(ppm)	1 1	110		110				110	0

				Initial Thre	e-Point Calibr	ation							
			(Out	tlet) Low Lev	vel Calibration	Standard							
Cpd	Conc.	Iı	ıj. 1	I	nj. 2	Iı	nj. 3		Average				
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	OK?			
Ethylene Oxide	50.20	2.835	137098.9	2.834	134495	2.833	134893.3	2.834	135496	Y			
				Mid-Level C	alibration Sta	ndard							
Cpd	Conc.	Iı	ıj. 1	I	nj. 2	I	nj. 3		Average				
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	OK?			
Ethylene Oxide	25.10	2.831	69592.3	2.828	69026.3	2.828	69224.8	2.829	69281	Y			
	•						<u> </u>						
				Low-Level C	Calibration Sta	ndard							
Cpd	Conc.	Iı	Inj. 1		Inj. 2		Inj. 2		nj. 3	Average			
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	OK?			
Ethylene Oxide	10.04	2.823	27865.7	2.82	28054.3	2.817	27607.4	2.820	27842	Y			

7/10/2018

EPA Method 18: Determination of Gaseous Organic Compounds using Gas Chromatography

				Linear Regress	ion Calculation	S			
		EO - Inle	t				EO - Out	let	
Certified ppm	Average AC		Regression itistics	ppm from curve	Certified ppm	Average AC		Regression atistics	ppm from curve
5222.00 2611.00 652.75	11390798 5860679 1348368	R ² 0.9994	M 0.00045604	5194.72 2672.73 614.92	50.20 25.10 10.04	135496 69281 27842	R ² 0.9999	M 0.00036853	49.93 25.53 10.26
(6000.00							60.00	

Becton-Dickinson Medical
Catalytic Oxidizer
7/10-11/2018
EPA Method 18: Determination of Gaseous Organic Compounds using Gas Chromatography

	Quality Assurance Inlet											
	Inlet Line Loss Check (High-level calibration gas to the sample probe)											
Cpd	Conc.	Inj. 1	Sig. 10059	Inj. 2	Sig. 10060	Inj. 3	Sig.10061	Average			Triplicate	Recovery
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	ppm	OK?	OK?
Ethylene Oxide	5222.00	2.074	10710042	2.072	10817854	2.072	10788828	2.073	10772241	4912.63	Y	Y

		In	let Post Test C	alibration C	heck (mid-level	calibration	gas to the gas s	ampling val	ve)			
Cpd	Conc.	Inj. 1		Inj. 2		Inj. 3		Average			Triplicate	Pre/Post
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	ppm	OK?	OK?
Ethylene Oxide	2611.00	2.096	5525176.0	2.098	5464539.0	2.092	5833090.5	2.095	5607602	2557.32	Y	Y

	Run #2 Unspiked Bag Inlet											
Cpd	Conc.	Inj. 1		Inj. 2		Inj. 3	•	Average			Triplicate	Recovery
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	ppm	OK?	OK?
Ethylene Oxide	Unkown	2.082	2153093.3	2.081	2103305.2	2.081	2158600	2.081	2138333	975.18	Y	

	Post Test Spike Check (50:50 high-level calibration gas and Run #2)											
Cpd	Target Conc.	Inj. 1		Inj. 2		Inj. 3			Average		Triplicate	Spike
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	ppm	OK?	OK?
Ethylene Oxide	3098.59	2.078	6369979.5	2.078	6313084	2.078	6307601.5	2.078	6330222	2886.87	Y	Y

Becton-Dickinson Medical
Catalytic Oxidizer
7/10-11/2018
EPA Method 18: Determination of Gaseous Organic Compounds using Gas Chromatography

	Quality Assurance Outlet											
	Outlet Line Loss Check (High-level calibration gas to the sample probe)											
Cpd	Conc.	Inj. 1	Sig.20059	Inj. 2	Sig. 20060	Inj. 3	Sig.20061	Average			Triplicate	Recovery
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	ppm	OK?	OK?
Ethylene Oxide	50.20	2.738	126166.6	2.746	126469.3	2.744	124657.2	2.743	125764	46.35	Y	Y

		Ou	ıtlet Post Test (Calibration (Check (mid-level	l calibration	gas to the gas	sampling val	ve)			
Cpd	Conc.	Inj. 1	Sig.10043	Inj. 2	Sig.10044	Inj. 3	Sig.10045	Average			Triplicate	Pre/Post
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	ppm	OK?	OK?
Ethylene Oxide	25.10	2.695	64944.3	2.696	65305.8	2.698	67455.6	2.696	65902	24.29	Y	Y

	Run #2 Unspiked Bag Outlet											
Cpd	Conc.	Inj. 1		Inj. 2		Inj. 3		Average			Triplicate	Recovery
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	ppm	OK?	OK?
Ethylene Oxide	Unkown	2.780	75.1	2.78	10.2	2.780	165.9	2.780	84	0.03		

	Post Test Spike Check (50:50 high-level calibration gas and Run #2)											
Cpd	Target Conc.	Inj. 1		Inj. 2		Inj. 3			Average		Triplicate	Spike
ID	(ppm)	RT	AC	RT	AC	RT	AC	RT	AC	ppm	OK?	OK?
Ethylene Oxide	25.12	2.780	63384.6	2.78	63893.9	2.779	63522.2	2.780	63600	23.44	Y	Y

Appendix D

Lesni Stack Pre-Test Data

Date: 1 Jul 18 Recorded By: Daniel T Gaun T

Time	% LEL 30.630	% LEL 30.633	Inlet Bed Temp °C (Control) 25.610	Outlet Bed Temp °C 25.611
940	0.0	0,0	161	160
9:50 AM	0.0	0.0	140	161
10:00 AM	1.20	2.0	160	160
10, 10 AM	0.0	E.8	160	160
10:20 AM	1.8	2.3	160	163
10:30 AM	1,8	3.1	159	168
10.40 AM	2.7	3.8	160	172
10:50AM	2.6	3,3	159	179
11:00 AM	0.0	0.5	161	183
11.10 AM	2,2	3.2	160	186
11.20 AM	2.6	3.2	160	184
11:30 AM	1.2	1,9	160	182
11:40 AM	2.6	3.2	160	186
11:50AM	2.7	3,3	159	187
12:00 PM	1.8	2.6	161	185
12:10 PM	3. 2	3,8	159	188
12:20 PM	3.1	3, 9	161	188
12.30 PM	2.8	3.3	160	188
12.40 PM	26	3.3	159	189
12:50 PM	3,5	3.3	161	192
1,00 PM	5.3 3.3	6.0	161	193
1:10 FM	6.3	5.8	160	194
1:20 pm	2.7	3.7	161	198
1:30 PM	29	3.8	162	198
1:40 PM	3,7	4.7	163	200

Post Vul

ry 5 602x na

W. 3

Lesni Stack Pre-Test Data

Date: 11 Jul 18 Recorded By: Daniel T Gaun T

1 . x = 0 m	The second secon	30.633	(Control) 25.610	Outlet Bed Temp °C 25.611
1:50 PM	2.9	3.6	143	201
2.00 PM	4.4	5.3	164	201
2:10 FM	4.0	4.9	165	202
2:20 PM	2.8	3,5	165	203
2.30 PM	3:9	5.0	166	206
2;40 PM	2.4	3,3	168	206
2,50 PM	3.7	4.3	166	203
3:00 FM	4.4	5.3	168	208
3:10 PM	2.9	3,5	168	203
3;20 PM	3.4	4.1	167	206
3: 30 PM	3.2	4.3	169	207
3.40 PM	3.8	4.4	168	205
3:50 pm	2.7	3,5	167	203
4:00 PM	3.0	4.0	167	204
4:10 PM	3,3	4.1	166	203

Last Page of Report